Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.

Identifieur interne : 003800 ( Main/Exploration ); précédent : 003799; suivant : 003801

Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.

Auteurs : Johannes Melchers [Allemagne] ; Michael Diechtierow ; Krisztina Fehér ; Irmgard Sinning ; Ivo Tews ; R Luise Krauth-Siegel ; Claudia Muhle-Goll

Source :

RBID : pubmed:18684708

Descripteurs français

English descriptors

Abstract

Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.

DOI: 10.1074/jbc.M803563200
PubMed: 18684708
PubMed Central: PMC2662087


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.</title>
<author>
<name sortKey="Melchers, Johannes" sort="Melchers, Johannes" uniqKey="Melchers J" first="Johannes" last="Melchers">Johannes Melchers</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Structure and Biocomputing, EMBL, 69117 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Structure and Biocomputing, EMBL, 69117 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Diechtierow, Michael" sort="Diechtierow, Michael" uniqKey="Diechtierow M" first="Michael" last="Diechtierow">Michael Diechtierow</name>
</author>
<author>
<name sortKey="Feher, Krisztina" sort="Feher, Krisztina" uniqKey="Feher K" first="Krisztina" last="Fehér">Krisztina Fehér</name>
</author>
<author>
<name sortKey="Sinning, Irmgard" sort="Sinning, Irmgard" uniqKey="Sinning I" first="Irmgard" last="Sinning">Irmgard Sinning</name>
</author>
<author>
<name sortKey="Tews, Ivo" sort="Tews, Ivo" uniqKey="Tews I" first="Ivo" last="Tews">Ivo Tews</name>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
<author>
<name sortKey="Muhle Goll, Claudia" sort="Muhle Goll, Claudia" uniqKey="Muhle Goll C" first="Claudia" last="Muhle-Goll">Claudia Muhle-Goll</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18684708</idno>
<idno type="pmid">18684708</idno>
<idno type="doi">10.1074/jbc.M803563200</idno>
<idno type="pmc">PMC2662087</idno>
<idno type="wicri:Area/Main/Corpus">003827</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003827</idno>
<idno type="wicri:Area/Main/Curation">003827</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003827</idno>
<idno type="wicri:Area/Main/Exploration">003827</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.</title>
<author>
<name sortKey="Melchers, Johannes" sort="Melchers, Johannes" uniqKey="Melchers J" first="Johannes" last="Melchers">Johannes Melchers</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Structure and Biocomputing, EMBL, 69117 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Structure and Biocomputing, EMBL, 69117 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Diechtierow, Michael" sort="Diechtierow, Michael" uniqKey="Diechtierow M" first="Michael" last="Diechtierow">Michael Diechtierow</name>
</author>
<author>
<name sortKey="Feher, Krisztina" sort="Feher, Krisztina" uniqKey="Feher K" first="Krisztina" last="Fehér">Krisztina Fehér</name>
</author>
<author>
<name sortKey="Sinning, Irmgard" sort="Sinning, Irmgard" uniqKey="Sinning I" first="Irmgard" last="Sinning">Irmgard Sinning</name>
</author>
<author>
<name sortKey="Tews, Ivo" sort="Tews, Ivo" uniqKey="Tews I" first="Ivo" last="Tews">Ivo Tews</name>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
<author>
<name sortKey="Muhle Goll, Claudia" sort="Muhle Goll, Claudia" uniqKey="Muhle Goll C" first="Claudia" last="Muhle-Goll">Claudia Muhle-Goll</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>DNA Mutational Analysis (MeSH)</term>
<term>Lysine (chemistry)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxygen (chemistry)</term>
<term>Peroxidases (chemistry)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protozoan Proteins (chemistry)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Thioredoxins (chemistry)</term>
<term>Trypanosoma brucei brucei (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de mutations d'ADN (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Lysine (composition chimique)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxygène (composition chimique)</term>
<term>Peroxidases (composition chimique)</term>
<term>Protéines de protozoaire (composition chimique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thiorédoxines (composition chimique)</term>
<term>Trypanosoma brucei brucei (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Lysine</term>
<term>Oxygen</term>
<term>Peroxidases</term>
<term>Protozoan Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Lysine</term>
<term>Oxygène</term>
<term>Peroxidases</term>
<term>Protéines de protozoaire</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>DNA Mutational Analysis</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de mutations d'ADN</term>
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Modèles biologiques</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Séquence d'acides aminés</term>
<term>Trypanosoma brucei brucei</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18684708</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>283</Volume>
<Issue>44</Issue>
<PubDate>
<Year>2008</Year>
<Month>Oct</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.</ArticleTitle>
<Pagination>
<MedlinePgn>30401-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M803563200</ELocationID>
<Abstract>
<AbstractText>Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Melchers</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Structure and Biocomputing, EMBL, 69117 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diechtierow</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fehér</LastName>
<ForeName>Krisztina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sinning</LastName>
<ForeName>Irmgard</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tews</LastName>
<ForeName>Ivo</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krauth-Siegel</LastName>
<ForeName>R Luise</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muhle-Goll</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2RM5</AccessionNumber>
<AccessionNumber>2RM6</AccessionNumber>
<AccessionNumber>3DWV</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114110">tryparedoxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C110959">tryparedoxin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>J Biol Chem. 2011 Apr 29;286(17):15618</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014346" MajorTopicYN="N">Trypanosoma brucei brucei</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18684708</ArticleId>
<ArticleId IdType="pii">M803563200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M803563200</ArticleId>
<ArticleId IdType="pmc">PMC2662087</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1999 Mar;13(3):289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 May;6(5):458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10535922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10737789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2001 Mar;382(3):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11347894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2001;339:71-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11462826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 12;277(15):12572-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Feb 22;295(5559):1520-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11859194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2002 Jun;12(3):383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12127459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Nov 15;111(4):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 28;278(9):6809-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Jan;28(1):32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Feb 19;125(7):1731-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12580598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 22;278(34):31640-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2003;17(1-4):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1992;46:695-729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Apr 9;337(5):1079-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15046979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43522-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2005 Jan 21;44(5):690-715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 15;280(15):14385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Sep 6;44(35):11864-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2006 Oct-Nov;387(10-11):1329-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Jan 26;365(4):1033-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8678-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 May;274(9):2163-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Aug 1;405(3):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Jul 13;370(3):512-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17531267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11963-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Aug 7;46(31):9041-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):798-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Dec 1;69(4):726-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2007;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18084889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2007;44:231-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18084897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Jul 20;220(2):507-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1856871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2008 Jun;2(1):65-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19636927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1991 Jan;44(1):145-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2011150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Sep;4(5):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Jun 1;133(1):51-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6852035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1995 Feb;8(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):51-5, 29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem Hoppe Seyler. 1995 Nov;376(11):651-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8962674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1996 Dec;8(4):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 May 23;268(5):869-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9180378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Environ Sci. 1997 Sep;10(2-3):136-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9315305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Jul 24;431(3):381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Karlsruhe</li>
</region>
<settlement>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Diechtierow, Michael" sort="Diechtierow, Michael" uniqKey="Diechtierow M" first="Michael" last="Diechtierow">Michael Diechtierow</name>
<name sortKey="Feher, Krisztina" sort="Feher, Krisztina" uniqKey="Feher K" first="Krisztina" last="Fehér">Krisztina Fehér</name>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
<name sortKey="Muhle Goll, Claudia" sort="Muhle Goll, Claudia" uniqKey="Muhle Goll C" first="Claudia" last="Muhle-Goll">Claudia Muhle-Goll</name>
<name sortKey="Sinning, Irmgard" sort="Sinning, Irmgard" uniqKey="Sinning I" first="Irmgard" last="Sinning">Irmgard Sinning</name>
<name sortKey="Tews, Ivo" sort="Tews, Ivo" uniqKey="Tews I" first="Ivo" last="Tews">Ivo Tews</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Melchers, Johannes" sort="Melchers, Johannes" uniqKey="Melchers J" first="Johannes" last="Melchers">Johannes Melchers</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003800 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003800 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18684708
   |texte=   Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18684708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020